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When a moving stimulus is presented at a speci¢c temporal fre-
quency, both steady-state responses and induced g activity may
be elicited in the electroencephalogram. The electroencephalo-
gram was recorded when study participants viewed random dot
kinematogramsunder three conditions: coherentmotion, incoher-
ent motion and stationary. Dot position was changed at a rate of
9.3Hz in the coherent and incoherent conditions. Induced power

at 40Hz was increased during coherent motion compared with
the other conditions. In contrast, the steady-state response at
9.3Hz showed a trend for increased power during the incoherent
condition. These results suggest that steady-state responses to
moving stimuli re£ect sensory activation, while the induced g
activity indexes perceptual processes. NeuroReport 16:625^630
�c 2005 LippincottWilliams &Wilkins.
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BACKGROUND
Visual features such as motion, spatial frequency and color
are processed by distributed neural circuits [1,2]. The visual
perception of objects in space therefore requires binding
multiple features to form a single percept. Synchronization
in firing of different regions of the brain may be a
mechanism facilitating the binding process [3–5]. When
such synchronization occurs, the firing rate of neurons
usually centers within the g range (30–100Hz) [6,7].
In humans, the electroencephalogram (EEG) has been

used to investigate the relationship between neural syn-
chronization and perception. Several studies have shown
enhancement of g activity in the EEG during visual tasks
when coherent representations are generated [e.g. 8].
Induced g activity has also been observed in intracranial
recordings in humans using a similar visual paradigm [9].
Previous studies have demonstrated that coherently moving
bars, but not incoherent motion, produced a burst of g
activity during passive viewing [10,11]. Thus, g activity in
EEG occurs with stimuli and in conditions similar to those
that elicit synchronization at the cellular level.
The EEG may also be entrained by periodic stimulation.

When a temporally modulated visual stimulus is presented,
the EEG shows phase-locked oscillations at the stimulus
frequency. This entrainment of the EEG has been referred to
as the steady-state response, and can be elicited by both
flickering and moving stimuli [12,13].
Both steady-state and induced g activity have been used

to study visual processing. However, it is not clear whether
these two types of oscillation reflect the activity of the same
or different neural circuits or how they relate to perceptual
processes. One approach to this question is to determine
whether varying stimulus features affect the two types of
responses differentially. We used this technique to identify
the neural correlates of steady-state and induced g activity

to motion. A random dot kinetogram (RDK) was used to
elicit both steady-state and induced g activity to motion. The
periodic changes of the position of the dots in RDK evoke a
steady-state potential at the frequency of displacement [13].
Because the perception of global motion in RDK requires
integration of local motion signals [14], we hypothesized
that a coherent RDK would induce g activity, as has been
shown in animal studies [15,16], while the incoherent RDK
would not.

METHOD
Seventeen healthy study participants (nine women,
age¼23.272.9 years) took part in this experiment. An
informed written consent was obtained. Participants were
asked to relax, keep their eyes open and focus on the display
during stimulus presentation. All stimuli were presented on
a Power Macintosh computer. The experiment included
three conditions: coherent motion, incoherent motion and
stationary. In the coherent condition, all dots in RDK were
displaced from left to right within the stimuli window, and
during the incoherent condition, all dots were displaced at
randomly generated angles. The dots were static in the
stationary condition. A total of 100 dots were used to
generate the RDK. The stimulus window subtended 51 of
the visual angle and the rate of displacement of dots was
51/s. The position of dots was refreshed every 107.5ms
(9.3Hz) for both the coherent and incoherent conditions. All
trials were presented for 1600ms, with a 1.5-s interval
between trials. There were 100 trials in all three conditions.
However, eight participants had only 50 trials in the
stationary condition. The conditions were randomized
across trials and participants were given breaks after every
50 trials. EEG was recorded with a sampling rate of 1000Hz
and filtered between 1 and 200Hz. EEG was recorded from
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14 scalp electrodes using an electrode cap and additional
electrodes to record the vertical and horizontal electroocu-
logram. The electrode impedance was maintained below
10kO. All channels were referenced to the right ear lobe.
The recorded EEG was segmented into trials that began at

stimulus onset and ended at 1600ms. Trials that had
amplitude values exceeding 7100 mV were rejected from
further processing. Eye movement artifact was corrected
using Gratton’s algorithm [17]. The steady-state potentials
were obtained for the time period when the stimulus was
presented after averaging across trials within each con-
dition. A fast Fourier transform (FFT) was used to obtain the
power spectrum from the averaged event-related potential.
The log10 power at 9.3Hz was calculated at Pz and Oz for
statistical analysis. The Vision Analyzer was used for EEG
analysis (Brain Products, GmbH, München, Germany).
Induced g activity was measured using a wavelet-based

time frequency transform. A Morlet wavelet with a wavelet
factor of 8 was convoluted with the single trials. The
resultant transformation had 35 frequency steps between 10
and 70Hz with varying frequency resolution for every time
point. The time frequency transforms from single trials were
averaged. The averaged transform was used for statistical
analyses. A baseline subtraction was then computed using
the average power in the interval 500ms before the stimulus
onset at each frequency.
For statistical analysis, power values from the g band

range (frequency bins with center frequencies ranging from
40 to 60Hz) were averaged using sequential 100-ms

windows between onset and offset of the stimuli
(1600ms). This resulted in 16 power values for every
participant and every channel, which were then log10
transformed for statistical analysis. Data from Cz, Pz and
Oz were used for analysis of induced g, and Pz and Oz for
steady-state activity, because the responses were largest at
these electrode sites. Because our primary objective was to
compare the coherent and incoherent conditions, a repeated
measure ANOVA was calculated for these two conditions
with the factors channels (2 or 3) and time (16). Similar
ANOVAs were also computed to compare the coherent with
static and incoherent with static conditions. A one-way
ANOVAwas used to identify the time periods when a time
by condition interaction was significant. Greenhouse–
Geisser-corrected significance values were used wherever
applicable.

The time frequency transform of the coherent condition
suggested that the g power oscillated during stimulus
presentation. In order to identify the frequency at which g
activity changed over time, an FFT was computed on the
power of g frequency bin (center frequency of 50Hz)
derived from the wavelet analysis for time period between
0 and 1600ms.

RESULTS
Figure 1 shows the averaged steady-state potential, aver-
aged power spectrum and spatial plot of power at 9.3Hz to
three conditions. In both the coherent and incoherent
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Fig.1. Averagedwaveforms and power spectra (for Oz) and spatial distribution of the steady-state response at 9.3Hz for three conditions.The wave-
forms were ¢ltered between 8 and12Hz before averaging across participants.
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conditions, the steady-state potentials were larger in the
posterior head regions (Oz and Pz). The ANOVA on power
at 9.3Hz from the two electrode sites (Pz and Oz) showed a
trend for increased activity during the incoherent condition
[F(1,32)¼3.67, p¼0.06]. The channel effect for this compar-
ison was significant [F(1,32)¼9.46, po0.01] with Oz having
the highest amplitude.
The wavelet-based time frequency analysis showed bursts

of g activity centered around 40Hz during the coherent
motion condition, but not during the other conditions
(Fig. 2a). Figure 2b shows the average spatial distribution
across participants during three different duration segments
of 100ms in the g frequency band (frequency bins with
center frequency ranging from 40 to 60Hz). The spatial
distribution showed maximum g activity at the central and
parietal regions around 500ms after the onset of the stimuli
and continued until 1400ms. The g band activity was higher
at all the electrode sites during the coherent condition
compared with the incoherent and static conditions.
The ANOVA comparing the coherent with incoherent

conditions showed main effects for condition [F(1,32)¼
14.74, po0.01], time [F(15,480)¼4.58, po0.01], channel

[F(2,64)¼7.99, po0.01] and a time by condition inter-
action [F(15,480)¼4.62, po0.01]. A one-way ANOVA at
every time point was used to characterize the time by
condition interaction. This analysis showed that the power
at g frequency differed between coherent and incoherent
conditions from 500 to 1600ms (Fig. 3). The ANOVA
comparing the coherent with static conditions also showed
main effects for condition [F(1,32)¼4.45, po0.05], time
[F(15,480)¼5.21, po0.01] and channel [F(2,64)¼8.95,
po0.01]. A significant time by condition effect [F(15,480)¼
2.16, p¼0.05] was displayed. In contrast, the ANOVA
comparing the incoherent with static conditions showed
no difference between conditions [F(1,32)¼2.71, p¼0.11].
Only the effect of time [F(15,480)¼3.30, po0.01] was
significant.
The induced g activity during the coherent condition

showed an oscillatory modulation (Fig. 2a). An FFT was
computed on the power values obtained from the time
frequency transform, which had a center frequency of 50Hz
from Cz. This showed a peak at 9.3Hz in the averaged FFT
across participants (Fig. 4). A similar analysis on the
incoherent and static conditions did not show a peak at
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Fig. 2. (a) Average time frequency transform for the three conditions at Cz, Pz and Oz. (b) Average spatial distribution of power at g frequency band
(frequency bins with center frequency ranging from 40 to 60Hz) during three di¡erent durations.
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this frequency (Fig. 4). Paired t-tests on the log value of the
power at 9.3Hz from this power spectrum showed
significant differences between the coherent and incoherent
conditions (t¼2.54, df¼16, p¼0.02).

DISCUSSION
The present study indicated that the coherent RDK elicited
induced g activity in the EEG, while incoherent motion or an
array of stationary dots did not. Similar findings have been
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reported for moving bar stimuli [10] and for a kinetogram
using magnetoencephalography [18]. These findings sug-
gest that g activity is generated during motion perception,
and may reflect integration of information from multiple
brain areas. Induced g activity peaked approximately 500ms

after the onset of the stimulus. Similar latencies have been
observed using moving bar stimuli, in which g activity
occurs between 300 and 500ms after stimulus onset [10].
This period may reflect the bottom-up processes involved in
object representation, and the time required to integrate
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motion information across a surface. The spatial distribution
of the induced g activity in this study showed a maximum at
central and parietal electrode sites.
Steady-state-evoked potentials, in contrast to the induced

g activity, showed a trend for higher power during
incoherent conditions compared with coherent conditions.
The steady-state activity was present during the entire
duration of the stimulus presentation, and had higher
activity in the occipital regions (Fig. 1). Because the steady-
state activity was generated for the entire duration of both
coherent and incoherent motion, it may reflect the sensory
activation to motion. Because induced g activity was present
only during coherent motion, it may be associated with
perceptual processes [19].
The differences between steady-state and induced oscilla-

tions suggest that these responses have different neural
sources. Primate studies have indicated that middle
temporal (MT) is influenced by the coherence of the moving
stimuli but that V1 activity is unaltered by coherence [20].
Moreover, a V1 neuron responds to its preferred motion
irrespective of other motion vectors within its receptive
field. In contrast, the responses of an MT neuron are
reduced if motion vectors with different directions are
present in its receptive field [21]. Therefore, it is likely that
population response will increase in V1 and decrease in MT
with increased incoherence. Consistent with this possibility,
functional magnetic resonance image activation in MT+ ,
but not V1, was shown to be proportional to the coherence
of the stimuli [22,23]. With respect to the present data,
steady-state responses may be generated in part by V1,
while MT+ may act in concert with other cortical regions in
the generation of the induced g activity. However, sources of
scalp activity cannot be directly identified solely on the basis
of the EEG data, and further studies are required to identify
sources at the cellular level.
Finally, this study showed that induced g activity was

modulated at the same frequency as the stimulus presenta-
tion. This suggests that the burst of g activity occurs for each
displacement of the coherent motion. If g activity indexes
the synchronization between different brain regions, then
this finding suggests that perception of coherent motion
involves synchronization in motion processing areas at
every change of position of the dots in the RDK.

CONCLUSION
This study indicated that induced g activity was greater for
coherent motion compared with incoherent motion or
stationary stimuli. Steady-state potentials, in contrast, were
greater for incoherent motion compared with coherent
motion. The findings from this study support the hypothesis
that induced g activity reflects perceptual processes such as
object representation, while steady-state potentials may
index early sensory activation.
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